1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Виленкин 5 Класс Часть 2 по Математике Учебник 📕 Жохов — Все Части
Математика Часть 2
5 класс учебник Виленкин
5 класс
Тип
ГДЗ, Решебник.
Автор
Виленкин Н.Я., Жохов В.И., Чесноков А.С., Александрова Л.А., Шварцбурд С.И.
Часть
2
Год
2020-2024.
Издательство
Просвещение.
Описание

ГДЗ по математике 5 класс к учебнику Виленкина, Жохова – это незаменимый помощник для школьников, осваивающих основы математики. Он помогает лучше понять материал, закрепить навыки и успешно справляться с домашними заданиями.

ГДЗ по Математике 5 Класс Часть 2 Вопрос 2 Виленкин, Жохов — Подробные Ответы

Вопрос

Что такое система счисления? Почему используемую нами систему счисления называют позиционной и десятичной?

Краткий ответ:

Способ записи чисел называют системой счисления.
Используемую нами систему счисления называют позиционной, так как важно на каком месте (позиции) стоит цифра; и десятичной, так как десять единиц одного разряда составляют одну единицу старшего разряда.

Подробный ответ:

1. Общее понятие о системах счисления:

Система счисления — это набор правил, с помощью которых представляются и обрабатываются числа. Число в системе счисления представляется через цифры или символы, которые могут иметь различные значения в зависимости от того, на каком месте (позиции) они находятся. Поэтому важно, какую позицию занимает цифра, чтобы понять её значение в числе.

Системы счисления можно разделить на две основные категории:

  • Позиционные системы счисления, где значение цифры зависит от её позиции.
  • Непозиционные системы счисления, где значение цифры не зависит от её положения (например, римская система счисления).

2. Позиционная система счисления:

Позиционная система счисления — это такая система, в которой значение каждой цифры зависит от её положения в числе. То есть, каждая цифра имеет определённую ценность в зависимости от того, в каком разряде (позиции) она стоит.

Принцип работы:

В позиционных системах каждая цифра умножается на основание системы счисления в соответствующей степени. Например, в десятичной системе (основание 10), цифры на разных позициях означают разные степени числа 10.

  • В числе 314314 в десятичной системе:

    314=3102+1101+4100314 = 3 \cdot 10^2 + 1 \cdot 10^1 + 4 \cdot 10^0

    То есть, цифра «3» находится в разряде сотен, «1» в разряде десятков, а «4» в разряде единиц.

3. Десятичная система счисления:

Десятичная система счисления — это наиболее часто используемая нами система счисления, в которой основание равно 10. В этой системе счисления используются 10 цифр: от 0 до 9.

  • Основание системы: 10.
  • Цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе важно, что каждая цифра умножается на степень числа 10, соответствующую её позиции. То есть, начиная с позиции единиц (10^0), каждая следующая позиция в числе увеличивает степень основания на 1.

Пример:

Число 54835483 в десятичной системе счисления представляется как:

5483=5103+4102+8101+31005483 = 5 \cdot 10^3 + 4 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0

Здесь:

  • «5» означает 5000 (5 тысяч),
  • «4» означает 400 (4 сотни),
  • «8» означает 80 (8 десятков),
  • «3» означает 3 (3 единицы).

Преимущество десятичной системы:

Десятичная система используется повсеместно, потому что она основана на числе 10, которое тесно связано с количеством пальцев на руках человека, что делает её интуитивно понятной и удобной в повседневной жизни.

4. Структура разрядов в десятичной системе:

Каждая позиция (разряд) в числе в десятичной системе представляет собой степень числа 10:

  • 10010^0 — разряд единиц (единицы),
  • 10110^1 — разряд десятков,
  • 10210^2 — разряд сотен,
  • 10310^3 — разряд тысяч и так далее.

Каждый разряд определяет ценность цифры в зависимости от её позиции в числе. Например, цифра «3» в разряде тысяч будет иметь значение 3000, а в разряде единиц — просто 3.

5. Примеры записи чисел в десятичной системе:

  • Число 54835483 можно расшифровать как:

    5483=51000+4100+810+315483 = 5 \cdot 1000 + 4 \cdot 100 + 8 \cdot 10 + 3 \cdot 1

  • Число 10251025 можно записать как:

    1025=11000+0100+210+511025 = 1 \cdot 1000 + 0 \cdot 100 + 2 \cdot 10 + 5 \cdot 1

6. Позиция цифры в числе:

Цифры в числе могут располагаться в любом месте, но их значения всегда будут зависеть от их позиции:

  • Первая позиция справа — это разряд единиц (10^0),
  • Вторая позиция справа — это разряд десятков (10^1),
  • Третья позиция справа — это разряд сотен (10^2),
  • И так далее.

7. Заключение:

Таким образом, десятичная система счисления является позиционной системой, где важно на каком месте стоит цифра, так как значение цифры зависит от её позиции в числе. В этой системе счисления используется десятизначный набор цифр (от 0 до 9), и на каждом уровне (разряде) значение цифры умножается на соответствующую степень числа 10.

Этот принцип записи чисел делает систему счисления удобной и гибкой для записи больших чисел, а также для математических операций, таких как сложение, вычитание, умножение и деление.



Общая оценка
4.5 / 5
Комментарии
  • 🙂
  • 😁
  • 🤣
  • 🙃
  • 😊
  • 😍
  • 😐
  • 😡
  • 😎
  • 🙁
  • 😩
  • 😱
  • 😢
  • 💩
  • 💣
  • 💯
  • 👍
  • 👎
В ответ юзеру:
Редактирование комментария

Оставь свой отзыв 💬

Комментариев пока нет, будьте первым!

Другие учебники
Другие предметы
Как пользоваться ГДЗ

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.