
ГДЗ к учебнику Виленкина для 6 класса, часть 1 (авторы: Жохов, Чесноков, Виленкин) — это практичный навигатор по ключевым темам стартового этапа курса, где закладывается основа математической компетентности: от освоения натуральных чисел и правил порядка действий до уверенной работы с обыкновенными дробями, признаками делимости, НОД и НОК, первыми задачами на проценты и простейшими уравнениями. Грамотно подготовленный решебник следует структуре учебника и помогает сформировать у школьника устойчивую привычку отслеживать логику рассуждений.
ГДЗ по Математике 6 Класс Часть 1 Номер 8 Мнемозина Виленкин, Чесноков, Жохов, Шварцбурд — Подробные Ответы
В спортивном празднике участвовали 90 школьников. Могут ли они на заключительном параде построиться: в две одинаковые шеренги? в пять одинаковых шеренг? в одиннадцать одинаковых шеренг? в колонну по шесть человек в ряд?
90 школьников:
– могут построиться в две одинаковые шеренги по: \(90 : 2 = 45\) человек в одной шеренге.
– могут построиться в пять одинаковых шеренг по: \(90 : 5 = 18\) человек в одной шеренге.
– не могут построиться в одиннадцать одинаковых шеренг, так как \(90\) не делится нацело на \(11\).
– могут построиться в колонну по шесть человек в ряд, всего будет \(90 : 6 = 15\) рядов.
90 школьников можно распределить по-разному, используя деление на равные группы. Если разделить всех школьников на две одинаковые шеренги, то в каждой шеренге будет по \(90 : 2 = 45\) человек. Это значит, что все дети делятся на две равные группы без остатка, и каждая группа содержит ровно 45 человек, что удобно для построения, например, если требуется сделать две одинаковые колонны.
Если рассматривать вариант разделения на пять одинаковых шеренг, то необходимо вычислить, сколько человек будет в каждой шеренге: \(90 : 5 = 18\). В этом случае каждая из пяти шеренг будет состоять из 18 человек, и деление также происходит без остатка. Такой способ построения применим, когда требуется разбить всех школьников на пять равных групп для каких-либо мероприятий или соревнований.
Если попытаться разделить школьников на одиннадцать одинаковых шеренг, то получится, что \(90 : 11\) не является целым числом, поскольку 90 не делится на 11 нацело. Остаток при делении равен 2, то есть \(90 = 8 \times 11 + 2\), и поэтому построить 11 одинаковых шеренг невозможно, так как в некоторых шеренгах будет разное количество человек. В этом случае множество подходящих вариантов для деления на 11 групп — \(\emptyset\), то есть решений нет.
Если рассмотреть построение в колонну по шесть человек в ряд, то общее число рядов будет равно \(90 : 6 = 15\). Это означает, что если в каждом ряду находится по 6 человек, то получится ровно 15 рядов, и все школьники будут распределены равномерно, без остатка. Такой способ построения часто используется для организации учеников в колонны для парадов или других массовых мероприятий.

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.



Оставь свой отзыв 💬
Комментариев пока нет, будьте первым!