
ГДЗ к учебнику Виленкина для 6 класса, часть 1 (авторы: Жохов, Чесноков, Виленкин) — это практичный навигатор по ключевым темам стартового этапа курса, где закладывается основа математической компетентности: от освоения натуральных чисел и правил порядка действий до уверенной работы с обыкновенными дробями, признаками делимости, НОД и НОК, первыми задачами на проценты и простейшими уравнениями. Грамотно подготовленный решебник следует структуре учебника и помогает сформировать у школьника устойчивую привычку отслеживать логику рассуждений.
ГДЗ по Математике 6 Класс Часть 1 Номер 201 Мнемозина Виленкин, Чесноков, Жохов, Шварцбурд — Подробные Ответы
Запишите в виде частного дроби: \(11 : 9\); \(19 : 20\); \(0{,}6\); \(0{,}13\).
а) \(\frac{6}{11} = 6 : 11\).
б) \(\frac{19}{9} = 19 : 9\).
в) \(\frac{37}{10} = 37 : 10\).
г) \(0{,}6 = \frac{6}{10} = \frac{3}{5} = 3 : 5\).
д) \(0{,}13 = \frac{13}{100} = 13 : 100\).
а) Рассмотрим дробь \(\frac{6}{11}\). Она выражает отношение числа 6 к числу 11. Это можно записать в виде пропорции \(6 : 11\), что означает «6 к 11». Таким образом, дробь и отношение показывают одно и то же соотношение между двумя числами, только записаны разными способами.
б) Аналогично дроби \(\frac{19}{9}\), она показывает, что первая часть равна 19, а вторая — 9. Записав это как отношение, получаем \(19 : 9\). Это означает, что на каждые 19 частей одной величины приходится 9 частей другой. Запись в виде отношения помогает наглядно представить соотношение двух чисел.
в) Для дроби \(\frac{37}{10}\) мы видим, что числитель равен 37, а знаменатель — 10. Запись в виде отношения \(37 : 10\) показывает, что 37 частей одной величины соотносятся с 10 частями другой. Такое представление полезно для сравнения величин и понимания их пропорциональности.
г) Число с десятичной дробью \(0{,}6\) можно представить в виде обыкновенной дроби \(\frac{6}{10}\), так как 6 стоит на месте десятых. Эту дробь можно сократить на 2, получив \(\frac{3}{5}\). Записав это как отношение, получаем \(3 : 5\), что означает, что на каждые 3 части одной величины приходится 5 частей другой. Сокращение дроби упрощает понимание и работу с числами.
д) Аналогично, десятичная дробь \(0{,}13\) равна \(\frac{13}{100}\), так как 13 стоит на месте сотых. Записав это в виде отношения, получаем \(13 : 100\). Это показывает, что 13 частей одной величины приходится на 100 частей другой. Такое представление часто используется для выражения процентов и долей.

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.



Оставь свой отзыв 💬
Комментариев пока нет, будьте первым!