
ДЗ к учебнику Виленкина, Жохова, Чеснокова за 6 класс, часть 2 — это продолжение базовой линии курса, где уже отрабатываются навыки вычислений и решаются более прикладные задачи. Во второй части появляется системность: темы связываются между собой, а решения требуют аккуратности на каждом шаге. Решебник здесь помогает не просто сверить итог, а восстановить логику — увидеть, почему именно так выбирается способ, как обосновывается переход между действиями и где чаще всего возникают ошибки.
ГДЗ по Математике 6 Класс Часть 2 Задачи на повторение П.106 Виленкин, Жохов — Подробные Ответы
Семь шагов Маши длиннее пяти шагов Оли на 73 см. Шаг Оли на 9 см длиннее шага Маши. Чему равна длина шага каждой девочки?
Пусть шаг Маши равен \(x\) см, тогда шаг Оли равен \(x + 9\) см.
Семь шагов Маши составляют \(7x\) см, пять шагов Оли — \(5(x + 9)\) см. По условию семь шагов Маши длиннее пяти шагов Оли на 73 см, значит:
\(7x — 5(x + 9) = 73\)
Раскроем скобки:
\(7x — 5x — 45 = 73\)
Соберём подобные:
\(2x — 45 = 73\)
Прибавим 45 к обеим частям:
\(2x = 73 + 45\)
\(2x = 118\)
Разделим на 2:
\(x = \frac{118}{2} = 59\) см — шаг Маши.
Шаг Оли:
\(x + 9 = 59 + 9 = 68\) см.
Ответ: 59 см и 68 см.
Пусть длина одного шага Маши равна \(x\) сантиметров. Тогда, поскольку шаг Оли на 9 сантиметров длиннее, длина одного шага Оли будет равна \(x + 9\) сантиметров. Это основное предположение, на котором строится дальнейшее решение задачи.
Далее необходимо выразить длину пути, пройденного каждым из них. Семь шагов Маши равны \(7x\) сантиметров, так как каждый шаг имеет длину \(x\), а их всего семь. Аналогично, пять шагов Оли равны \(5(x + 9)\) сантиметров, так как длина каждого шага \(x + 9\), а шагов всего пять. По условию задачи известно, что семь шагов Маши длиннее пяти шагов Оли на 73 сантиметра. Это значит, что разница между длиной пути Маши и длиной пути Оли равна 73 сантиметра, что можно записать уравнением \(7x — 5(x + 9) = 73\).
Раскроем скобки в уравнении: \(7x — 5x — 45 = 73\). Теперь объединим подобные члены: \(2x — 45 = 73\). Чтобы избавиться от числа \(-45\) слева, прибавим 45 к обеим частям уравнения, получим \(2x = 73 + 45\), то есть \(2x = 118\). Чтобы найти \(x\), разделим обе части уравнения на 2: \(x = \frac{118}{2} = 59\). Значит длина шага Маши равна 59 сантиметров. Длина шага Оли будет равна \(x + 9 = 59 + 9 = 68\) сантиметров. Таким образом, шаг Маши равен 59 см, а шаг Оли — 68 см.

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.



Оставь свой отзыв 💬
Комментариев пока нет, будьте первым!