
ГДЗ к учебнику Виленкина для 6 класса, часть 1 (авторы Жохов, Чесноков, Виленкин) — это удобный ориентир по базовым темам начала курса, где формируется фундамент математической грамотности: от понимания натуральных чисел и порядка действий до уверенной работы с обыкновенными дробями, признаками делимости, НОД и НОК, первыми задачами на проценты и элементарными уравнениями. Правильно составленный решебник отражает структуру учебника и помогает выстроить у ученика устойчивую привычку следить за логикой решения, сопоставлять шаги с теорией.
ГДЗ по Математике 6 Класс Часть 1 Номер 2.503 Виленкин, Жохов — Подробные Ответы
После того как туристы преодолели на байдарках \(0{,}48\) всего пути, им осталось пройти ещё 24 км. Чему равна протяжённость всего пути?
Весь путь равен 1. Туристы прошли \(0{,}48\) пути, значит осталось пройти \(1 — 0{,}48 = 0{,}52\) части пути, что соответствует 24 км.
Чтобы найти весь путь, нужно 24 км разделить на \(0{,}52\):
\(24 : 0{,}52 = \frac{2400}{52} = \frac{4 \cdot 600}{4 \cdot 13} = \frac{600}{13} = 46 \frac{2}{13}\) км.
Ответ: \(46 \frac{2}{13}\) км.
Весь путь условно принимается за 1. По условию задачи туристы прошли \(0{,}48\) части этого пути, то есть они преодолели чуть меньше половины всего расстояния. Чтобы узнать, сколько осталось пройти, нужно из целого пути вычесть уже пройденную часть: \(1 — 0{,}48 = 0{,}52\). Это означает, что осталось пройти \(0{,}52\) части всего пути. По условию эта оставшаяся часть равна 24 км, то есть \(0{,}52\) части пути соответствует 24 километра.
Чтобы найти длину всего пути, надо разделить известное расстояние, соответствующее части пути, на эту часть. То есть нужно разделить 24 км на \(0{,}52\), так как \(0{,}52\) — это доля от всего пути, а 24 км — фактическое расстояние этой доли. Записываем это как: \(24 : 0{,}52\). Чтобы упростить вычисление, умножаем числитель и знаменатель на 100, чтобы избавиться от десятичных дробей: \(24 : 0{,}52 = \frac{2400}{52}\).
Далее упрощаем дробь \(\frac{2400}{52}\). Делим числитель и знаменатель на 4: \(\frac{2400}{52} = \frac{4 \cdot 600}{4 \cdot 13} = \frac{600}{13}\). Число \(600\) на \(13\) не делится нацело, поэтому преобразуем неправильную дробь в смешанное число. Делим 600 на 13: получается 46 целых, и остаток 2, так как \(46 \times 13 = 598\). Остаток 2 становится числителем дробной части, знаменатель остается 13. Итого получаем \(46 \frac{2}{13}\) километров — это длина всего пути туристов.
Ответ: \(46 \frac{2}{13}\) км.

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.



Оставь свой отзыв 💬
Комментариев пока нет, будьте первым!