1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Математике 6 Класс Часть 1 Учебник 📕 Виленкин, Чесноков, Жохов — Все Части
Математика Часть 1
6 класс учебник Виленкин
6 класс
Тип
ГДЗ, Решебник.
Автор
Виленкин Н.Я., Жохов В.И., Чесноков А.С.
Часть
1
Год
2020-2024.
Издательство
Просвещение.
Описание

ГДЗ к учебнику Виленкина для 6 класса, часть 1 (авторы Жохов, Чесноков, Виленкин) — это удобный ориентир по базовым темам начала курса, где формируется фундамент математической грамотности: от понимания натуральных чисел и порядка действий до уверенной работы с обыкновенными дробями, признаками делимости, НОД и НОК, первыми задачами на проценты и элементарными уравнениями. Правильно составленный решебник отражает структуру учебника и помогает выстроить у ученика устойчивую привычку следить за логикой решения, сопоставлять шаги с теорией.

ГДЗ по Математике 6 Класс Часть 1 Номер 1.52 Виленкин, Жохов — Подробные Ответы

Задача

Квадрат на рисунке 1.3 разбит на 100 долей. Найдите площадь всего квадрата, если закрашено 20,25 см².

Краткий ответ:

Закрашено 9 долей, площадь которых равна \(20,25 \text{ см}^2\).

Площадь одной доли: \(20,25 : 9 = 2,25 \text{ см}^2\).

Всего долей 100, значит площадь всего квадрата: \(2,25 \cdot 100 = 225 \text{ см}^2\).

Ответ: \(225 \text{ см}^2\).

Подробный ответ:

Закрашено 9 долей, площадь которых равна \(20,25 \text{ см}^2\). Чтобы найти площадь одной доли, нужно общую площадь закрашенных частей разделить на количество этих долей. Выполним деление: \(20,25 : 9 = 2,25 \text{ см}^2\). Это означает, что каждая доля занимает площадь \(2,25 \text{ см}^2\).

Квадрат разбит на 100 равных долей, значит общая площадь квадрата равна площади одной доли, умноженной на 100. Используем найденное значение площади одной доли и умножаем: \(2,25 \cdot 100 = 225 \text{ см}^2\). Таким образом, площадь всего квадрата составляет \(225 \text{ см}^2\).

Итог: зная площадь нескольких долей и их количество, мы нашли площадь одной доли, а затем умножили её на общее количество долей, чтобы получить площадь всего квадрата. Это стандартный способ решения задач, связанных с делением фигур на равные части и вычислением общей площади. Ответ: \(225 \text{ см}^2\).



Общая оценка
3.6 / 5
Комментарии
  • 🙂
  • 😁
  • 🤣
  • 🙃
  • 😊
  • 😍
  • 😐
  • 😡
  • 😎
  • 🙁
  • 😩
  • 😱
  • 😢
  • 💩
  • 💣
  • 💯
  • 👍
  • 👎
В ответ юзеру:
Редактирование комментария

Оставь свой отзыв 💬

Комментариев пока нет, будьте первым!

Другие учебники
Другие предметы
Как пользоваться ГДЗ

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.