1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Виленкин 5 Класс Часть 1 по Математике Мнемозина Учебник 📕 Жохов — Все Части
Математика Часть 1
5 класс учебник Виленкин
5 класс
Тип
ГДЗ, Решебник.
Автор
Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
Часть
1
Год
2020
Издательство
Мнемозина.
Описание

Учебник по математике для 5 класса «Мнемозина» авторов Виленкин и Жохов представляет собой качественное пособие, которое активно используется в школьной программе. Этот учебник сочетает в себе подробные теоретические материалы, интересные задачи и увлекательные примеры, что делает его полезным инструментом для формирования базовых знаний и навыков у школьников.

ГДЗ по Математике 5 Класс Часть 1 Номер 275 Мнемозина Виленкин, Жохов — Подробные Ответы

Задача

На координатном луче отмечены точки О(0), А(12), В(7). На сколько единичных отрезков отрезок ОА длиннее отрезка ОВ?

Краткий ответ:

На ОА − ОВ = 12 − 7 = 5 единичных отрезков.

Подробный ответ:

Рассмотрим координаты точек:

  • Точка OO имеет координату 00
  • Точка AA имеет координату 1212
  • Точка BB имеет координату 77

Длина отрезка OAOA:
Так как O(0)O(0) и A(12)A(12), длина отрезка OA=120=12OA = 12 — 0 = 12 единичных отрезков.

Длина отрезка OBOB:
O(0)O(0) и B(7)B(7), значит OB=70=7OB = 7 — 0 = 7 единичных отрезков.

Насколько отрезок OAOA длиннее OBOB:

OAOB=127=5OA — OB = 12 — 7 = 5

Ответ:
Отрезок OAOA длиннее отрезка OBOB на 5 единичных отрезков.



Общая оценка
4.6 / 5
Комментарии
  • 🙂
  • 😁
  • 🤣
  • 🙃
  • 😊
  • 😍
  • 😐
  • 😡
  • 😎
  • 🙁
  • 😩
  • 😱
  • 😢
  • 💩
  • 💣
  • 💯
  • 👍
  • 👎
В ответ юзеру:
Редактирование комментария

Оставь свой отзыв 💬

Комментариев пока нет, будьте первым!

Другие учебники
Другие предметы
Как пользоваться ГДЗ

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.