1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Виленкин 5 Класс Часть 2 по Математике Учебник 📕 Жохов — Все Части
Математика Часть 2
5 класс учебник Виленкин
5 класс
Тип
ГДЗ, Решебник.
Автор
Виленкин Н.Я., Жохов В.И., Чесноков А.С., Александрова Л.А., Шварцбурд С.И.
Часть
2
Год
2020-2024.
Издательство
Просвещение.
Описание

ГДЗ по математике 5 класс к учебнику Виленкина, Жохова – это незаменимый помощник для школьников, осваивающих основы математики. Он помогает лучше понять материал, закрепить навыки и успешно справляться с домашними заданиями.

ГДЗ по Математике 5 Класс Часть 2 Номер 5.541 Виленкин, Жохов — Подробные Ответы

Задача

Вычислите: 

Краткий ответ:

Математика 5 класс учебник Виленкин, Жохов 2 часть, задание 5.541

Подробный ответ:

а)

5:23=532=152=7125 : \frac{2}{3} = 5 \cdot \frac{3}{2} = \frac{15}{2} = 7 \frac{1}{2}

  1. Для деления на дробь, умножаем на её обратную:

    5:23=5325 : \frac{2}{3} = 5 \cdot \frac{3}{2}

  2. Умножаем числители и знаменатели:

    532=5312=1525 \cdot \frac{3}{2} = \frac{5 \cdot 3}{1 \cdot 2} = \frac{15}{2}

  3. Преобразуем дробь 152\frac{15}{2} в смешанное число:

    152=712\frac{15}{2} = 7 \frac{1}{2}

Ответ: 7127 \frac{1}{2}

б)

38:13=3831=98=118\frac{3}{8} : \frac{1}{3} = \frac{3}{8} \cdot \frac{3}{1} = \frac{9}{8} = 1 \frac{1}{8}

  1. Для деления на дробь, умножаем на её обратную:

    38:13=3831\frac{3}{8} : \frac{1}{3} = \frac{3}{8} \cdot \frac{3}{1}

  2. Умножаем числители и знаменатели:

    3831=3381=98\frac{3}{8} \cdot \frac{3}{1} = \frac{3 \cdot 3}{8 \cdot 1} = \frac{9}{8}

  3. Преобразуем дробь 98\frac{9}{8} в смешанное число:

    98=118\frac{9}{8} = 1 \frac{1}{8}

Ответ: 1181 \frac{1}{8}

в)

112:536=112365=36125=3660=35\frac{1}{12} : \frac{5}{36} = \frac{1}{12} \cdot \frac{36}{5} = \frac{36}{12 \cdot 5} = \frac{36}{60} = \frac{3}{5}

  1. Для деления на дробь, умножаем на её обратную:

    112:536=112365\frac{1}{12} : \frac{5}{36} = \frac{1}{12} \cdot \frac{36}{5}

  2. Умножаем числители и знаменатели:

    112365=136125=3660\frac{1}{12} \cdot \frac{36}{5} = \frac{1 \cdot 36}{12 \cdot 5} = \frac{36}{60}

  3. Упростим дробь 3660\frac{36}{60}, делим числитель и знаменатель на 12:

    3660=35\frac{36}{60} = \frac{3}{5}

Ответ: 35\frac{3}{5}

г)

1455:521=1455215=1421555=294275=119275\frac{14}{55} : \frac{5}{21} = \frac{14}{55} \cdot \frac{21}{5} = \frac{14 \cdot 21}{55 \cdot 5} = \frac{294}{275} = 1 \frac{19}{275}

  1. Для деления на дробь, умножаем на её обратную:

    1455:521=1455215\frac{14}{55} : \frac{5}{21} = \frac{14}{55} \cdot \frac{21}{5}

  2. Умножаем числители и знаменатели:

    1455215=1421555=294275\frac{14}{55} \cdot \frac{21}{5} = \frac{14 \cdot 21}{55 \cdot 5} = \frac{294}{275}

  3. Преобразуем дробь 294275\frac{294}{275} в смешанное число:

    294275=119275\frac{294}{275} = 1 \frac{19}{275}

Ответ: 1192751 \frac{19}{275}

д)

121234:1112=1212341211=11112663911=11239=2239\frac{121}{234} : \frac{11}{12} = \frac{121}{234} \cdot \frac{12}{11} = \frac{11 \cdot 11 \cdot 2 \cdot 6}{6 \cdot 39 \cdot 11} = \frac{11 \cdot 2}{39} = \frac{22}{39}

  1. Для деления на дробь, умножаем на её обратную:

    121234:1112=1212341211\frac{121}{234} : \frac{11}{12} = \frac{121}{234} \cdot \frac{12}{11}

  2. Умножаем числители и знаменатели:

    1212341211=1211223411\frac{121}{234} \cdot \frac{12}{11} = \frac{121 \cdot 12}{234 \cdot 11}

  3. Сокращаем общие множители. Число 11 можно сократить:

    1211223411=11112663911=11239=2239\frac{121 \cdot 12}{234 \cdot 11} = \frac{11 \cdot 11 \cdot 2 \cdot 6}{6 \cdot 39 \cdot 11} = \frac{11 \cdot 2}{39} = \frac{22}{39}

Ответ: 2239\frac{22}{39}

Итак, финальные ответы:

а) 7127 \frac{1}{2}
б) 1181 \frac{1}{8}
в) 35\frac{3}{5}
г) 1192751 \frac{19}{275}
д) 2239\frac{22}{39}



Общая оценка
4.4 / 5
Комментарии
  • 🙂
  • 😁
  • 🤣
  • 🙃
  • 😊
  • 😍
  • 😐
  • 😡
  • 😎
  • 🙁
  • 😩
  • 😱
  • 😢
  • 💩
  • 💣
  • 💯
  • 👍
  • 👎
В ответ юзеру:
Редактирование комментария

Оставь свой отзыв 💬

Комментариев пока нет, будьте первым!

Другие учебники
Другие предметы
Как пользоваться ГДЗ

Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.